Research Press

Historical Firearms, Long Range Target Shooting & Military History

Main Menu

Research Press

Index

Source: The Times (London), Thursday, 2 February 1860

Some three or four years ago many of our engineers, manufacturers, and scientific men were deluded into going over to New York in the expectation of there seeing an industrial exhibition. Among others so misled was Mr. Whitworth, who, like all the rest, finding nothing worth looking at in the exhibition itself, tried to recompense himself for his visit by inspecting those manufactories which most abounded in the labour-saving machines which are used more or less extensively throughout the States: The two great centres for machinery of this description were at the United States’ arsenals at Springfield and, Harpers Ferry, and these accordingly Mr. Whitworth visited, saw the various processes there pursued of making small arms in thousands by machinery, and reported to our own Government strongly in favour both of the plan of the Government making its own weapons, and the means by which it could best be accomplished. The War-office, on receiving this report, adopted it forthwith, and, to their infinite credit, at once took a step which at the time even the most strenuous friends of progress in their secret souls scarcely approved. They sent out a commission, of which Mr. Anderson, now the chief superintendent of the Armstrong Gun Factory at Woolwich, was at the head, to make further inquiries into the subject of Mr. Whitworth’s report, and with power not only to order machines in America, but to engage American engineers to superintend them. This was the commencement of the now famous Enfield factory, and this is the first instance in which the English Government have ever had to send abroad either for machinery or men to work or make it. To their praise be it said they at once overstepped the formidable though narrow boundaries of national prejudice, and looked only for that market in which what they wanted could be best and easiest obtained. For a short time several of the new machines were erected and worked at Woolwich; but, when “Brown Bees” was no longer paramount in the service, it was determined to create an immense establishment for the manufacture of rifled small arms, apart and in itself distinct from the operations carried forward at the arsenal. A small shop, if we may so term it, for the manufacture of gun-stocks had always existed at Enfield, and this led the Government to turn their eyes in that direction, and once the place was seen, their gaze was, so to speak, fascinated. It was not at all the beauty of the spot which induced the Government to select it, for, in truth, a flatter or more dreary-looking waste, save Aldershot, was never seen. It was certainly not its salubrity, inasmuch as the whole country is eminently damp and unhealthy; neither was it either its convenience of access or its vicinage to skilled labour, for in both these requisites it was and still is singularly deficient as compared with other neighbourhoods. The reason why the Government selected it was, entirely independent of all these considerations of fitness, and due only to the simple fact that near the shop before alluded to was a canal which turned a waterwheel exerting some 20 or 25 horse-power. The idea of economizing and bringing into play this little waterwheel (which has now ten times its power of steam machinery to assist it) settled the whole affair. Foundations were laid and buildings commenced forthwith, and factories the size of little villages sprang up with more than the rapidity of colonial enterprise. Already the nucleus of a small town is fast gathering round the works. Hucksters’ shops, workmen’s houses, and small hotels are dotted here and there; and as it becomes easy now to calculate when, according to the natural course of things, “Ordnance Enfield,” as it is called, will some day become a town clamorous for corporate rights and the privileges attaching to its own M.P. And all these changes will be due to an old waterwheel which the Government could have got anywhere, and that, too, without the drawbacks attendant upon a superabundant supply of the pure element which turns it, and which occasionally hides the face of the surrounding country at Enfield, and places the floors of cottages and houses some inches under water. However, we suppose we must not quarrel with any cause which produces an effect so perfect in itself, so economical in its work, and so admirably managed, as the factory at Enfield undoubtedly is. It used to be a general remark, and one pretty generally believed, that Government could never compete advantageously with private manufacturers, and, to do them justice, the Government occasionally gave great force to the observation by rashly entering into contests with the trade on most unequal terms. At Enfield, however, they have discarded the usual routine. There is no costly system of supervision; on the contrary, everybody connected with the place is rather underpaid. The Government only seek there to make their own weapons, and intrusts all the means and appliances to the hands of private engineers of acknowledged, though unofficial, capacity. Mr. Burton, an American gentleman, is the working and real head of the factory, and to his untiring skill and diligence its singular excellence is due.

With such tokens of military ardour as now so extensively prevail throughout the kingdom the Enfield rifle is likely to become not only a household word, but almost a household weapon. At such a time, therefore, some account of the manufacture and peculiarities of this most effective, but most easily injured weapon, may be of interest, and, if it does not make our young volunteers good marksmen, it will at least put them on their guard against such careless treatment of their pieces as may put it out of their power ever to hit anything with them smaller than a haystack.

The first thing that strikes a visitor on entering the forges at Enfield where the barrels are made is the apparent rudeness and inadequacy of the machinery to its purpose. It may be urged that it makes the barrels very well, but the same excuse might be advanced for non-improvement in every stage of manufacture, and we are sure that among the clear-headed American mechanists now at the works are many who could at a day’s notice devise a far better apparatus for working up the iron of the barrels than that now in use. The materials for the barrels are brought to the factory in short square slabs of wrought iron (with the fibre of the metal crossing and recrossing at right angles), each some 12 inches long by 4 broad, and half an inch thick. These are heated and bent into a short tube, having somewhat the appearance of a rough and ill-made draining tile, and in this state are again heated to a bright white, and passed between iron rollers of the first gauge, which weld up the joining down the middle, and, by compression, lengthen the tube about 2½ or 3 inches more. It is again heated, and again passed between rollers of a smaller gauge, which lengthens it still further; and so on, again and again, until the operation has been repeated through 13 different gauges, when the rolling is complete, and the barrel – after some two hours’ manufacture – emerges at last a slender rough iron tube about four feet long, and having a hole down the centre the size of a large pea. The muzzles are then cut off, the “butts,” or ends, as they are termed, made up, and the process of welding on the “cone-seat,” or nipple for the cap, commences. This latter is a difficult operation, and one which requires no little quickness, care, and skill on the part of the workman. To insure rapidity of striking while the metals are red-hot, the breech of the barrel with the cone-seat is placed in a steel die under a small hammer worked by steam, which strikes at the rate of 400 blows a-minute, and under which, amid a terrific din, the metals are crushed together, with more than the strength of one piece.

This completes the forgings, and the barrels are passed from the smithy to the boring-shops, where the operation of boring (exclusive of rifling) is repeated no less than five distinct times. The barrels are for this purpose laid in horizontal machines, and the first sized borer is drawn up through them, not forced down, as, from the bend of the boring bit in forcing it through, it was found difficult to secure strict accuracy. The second boring at swift speed is then continued, and the third at slow speed, by which time the barrel is finished to within some two or three thousandths of an inch of its proper diameter, when the exterior is turned down also to its service size. The operation, if such it may be called, of straightening the barrel is then gone through after the screw-hole for the breech-piece has been bored. This straightening is one of the roughest and most unsatisfactory portions of the whole process of manufacture. From the very fine soft nature of the iron used in the construction of the barrel, and the extreme thinness of the metal itself, the least violence or concussion is apt either to bend the barrel outright, or else to put such a dint in its side as effectually makes an end of its good shooting. Thus, in the processes which we have already described, in spite of the utmost care, the barrel is supposed to have deviated from its true line sufficiently to require considerable rectification. This rectification is done, therefore, not by machinery, but by hand, a workman looking through the barrel and giving it a tap here and a tap there with a hammer, wherever it seems to him to require it. In defence of this apparently very rude method, which seems so astounding in connexion with a bore that must be accurate to the thousandth part of an inch, the managers of the works point to the results achieved, and say that out of some 2,000 weapons made weekly the gauge of all is accurate to a half-hair breadth. This undoubtedly is true, but it is nevertheless very far from proving that such mathematical exactness is brought about by a man simply looking through the barrel and giving it a knock now and a knock then whenever he fancies he by sight detects an inequality in it. Most practical mechanics are of opinion that the process either does no good to the barrel at all, or that its result, if worth anything, would be better and more easily accomplished by machinery.

An immense variety of milling and grinding stages are next gone through, which merely relate to the exterior of the barrel, and with which, of course, we need not trouble ourselves here. A detailed account of the whole manufacture would be out of the question, as our readers may easily imagine, when we say that the barrel undergoes no less than 66 distinct processes, and the whole rifle upwards of 700 ere it is completed. The barrel, then, having so far advanced in its progress towards completion as to be bored for the fourth time, it undergoes its first proof test of nearly one ounce of powder and one ball. Not one per cent. of the barrels yield under this trial, which has sometimes, in the case of doubtful barrels, or those which it was wished to burst, been carried to as high a charge as 2½ oz. of powder and 17 balls – the whole barrel full, in fact – before the metal ripped. After this the nipple-screw and nipple, with the “tang” or tongue which fastens the barrel to the stock, are made, though not a single piece is put together till the whole musket is complete to its minutest detail. Before the barrel leaves the boring-room it is again, bored out for the fifth time, and, having been polished by machinery inside and outside till it shines as bright as silver, it at last reaches its 56th stage of manufacture, and is taken to the finishing shop.

With the exception, perhaps, of the Laboratory at Woolwich, it would be difficult to name any factory room in the kingdom, not even excepting our largest cotton mills, which at the first glance presents such a bewildering scene of active, never-ceasing industry. Let our readers imagine, if they can, a single room more than an acre in extent, lofty and well lit, in which some thousand men and boys are incessantly employed in superintending machinery. The ear is pained by the hum of flywheels, which revolve in thousands till the eye is giddy with their whirl. Miles of shafting are spinning round mistily with a monotonous hum, the room is almost darkened and the view completely obscured by some 50,000 or 60,000 feet of broad flapping lathe-bands, which are driving no less than 600 distinct machines, all going together on their own allotted tasks, with a tremulous rapidity and ease that seem to swallow up the work like magic, and the first sight of which is inexpressibly astonishing to the spectator. It takes some minutes before the visitor can subdue the overwhelming feeling of surprise which this scene of activity always excites, no matter how often entered on. Following the barrel, then, but with care, into this maze of lathe-bands, we see the process of rifling first commenced. The rifling in the Enfield barrel consists of three broad shallow grooves, with a pitch of half a turn in the length of the barrel of three feet six inches. The depth of the rifling is 0.005 at the muzzle, and 0.013 at the breech, the width of each groove being 3-16ths of an inch. There are 16 rifling machines at Enfield, each of which turns out 26 barrels a-day, though, of course, the grooves are made separately, and after the same fashion as in the boring – viz., drawn through the gun from the muzzle to the breech. Looking at the light through a newly-rifled barrel has an extraordinary effect, the rings of reflected rays showing like bars of black and white metal alternately; and by the aid of these, as it is said, the workmen are able to distinguish whether or not the tube is perfectly accurate.

After the rifling it is again proved with half an ounce of powder and a single ball; then it is retouched, sighted, trimmed-off, milled, levelled, browned, and gauged, coming out in the gauge-room at last a finished barrel, made to such perfection of accuracy that the steel gauge of 577 thousandths of an inch passes freely through, while that of 580 sticks firm in the muzzle. Browning, as we have said, is the last operation which the gun undergoes, and this merely ornamental process occupies a week more than the whole manufacture of the gun itself-namely, four weeks. The time thus bestowed, however, is not without its value, inasmuch as after the “browning” is completed, though not till then, the gaugers are enabled to detect the slightest imperfect welding or least perceptible flaw of manufacture, when the piece is instantly rejected, and the workman under whose hands the flaw took place fined 3s., no matter whether the imperfection is discovered at the very commencement of the process or when all is finished. The barrels thus flawed, we regret to say, are sold as old iron, but still in the form of finished barrels, and so doubtless find their way back again into the market as proved pieces. That this latter arrangement of selling the barrels complete, though as old iron, nothing can be more objectionable, and we are sure the War-office only require to have their attention drawn to the matter to secure for the future that all such pieces, before they are sold, shall be bent and flattened in such a manner as to be totally useless, at least for gun barrels, ever after.

But, as we intimated at the commencement of this article, the long processes by which the Enfield is brought to completion cannot easily be disposed of in a notice like the present. We defer, then, to a future occasion our description of the other portions of the manufacture and the peculiar weaknesses which render this weapon above all others so liable on slight occasions to irreparable injury.